Ученым удалось кардинально увеличить время существования звуковых волн внутри стекла

adminGWP   01.01.2017   Комментарии к записи Ученым удалось кардинально увеличить время существования звуковых волн внутри стекла отключены

При этoм, зa счeт нeoбычнoй тexнoлoгии вoзбуждeния aкустичeскиx вoлн oни, эти вoлны, рaспрoстрaнялись и сущeствoвaли в oптичeскoм вoлoкнe гoрaздo дoльшe, чeм при oбычныx услoвияx. Однако, в отличие от большинства других материалов, акустическая проводимость стекла резко падает при снижении температуры.Такие специфические акустические свойства достаточно долго являлись тайной для ученых, исследующих и использующих стекло в своих экспериментах. В 1960-х годах ученые обнаружили еще целый ряд озадачивающих свойств стекла, оно проводит тепло намного хуже, чем ожидалось, и оно нагревается гораздо медленнее, чем определено теорией, учитывающей кристаллическое строение этого материала. Позже ученые нашли объяснение этим фактам, они заключаются в наличии внутри стекла поглощающих областей, которые взаимодействуют со звуковыми колебаниями в той же самой манере, как атомы взаимодействуют со светом. При комнатной температуре стекло является превосходным проводником акустических волн, в этом достаточно легко удостовериться, несильно стукнув чем-то металлическим по краю стеклянного бокала и слыша «стеклянный звон» в течение нескольких секунд. И при достижении температурной точки, лежащей в пределах криогенного диапазона, стекло практически перестает быть акустическим проводником.Группа ученых из Йельского университета нашла путь к увеличению акустической проводимости стекла. Однако, истинная природа этих «акустических атомов» в стеклянной среде так и не до конца понята учеными и по сегодняшний день.В дальнейших исследованиях ученые выяснили, что величина коэффициента поглощения «акустических атомов» в стекле увеличивается по мере снижения температуры. Исследователи считают, что данное достижение может стать основой новых технологий высокоточных измерений и новых принципов обработки информации. Известно, что кварцевое стекло является одним из самых прозрачных материалов на свете. Но у стекла имеется и несколько загадочных свойств. «Наша работа является первым шагом к появлению новой области — программируемой акустической динамики в стеклянной среде» — рассказывает Питер Рэкич (Peter Rakich), ученый из Йельского университета, — «Принципы этой динамики позволят реализовать новые методы управления светом, распространяющимся в стеклянной среде, что может быть использовано при разработке фотонных вычислительных устройств, оптических коммуникационных устройств, датчиков и многого другого». Этот свет приводил к генерации звуковых волн одной частоты, которые распространяясь по оптическому волокну, изменяли свою частоту и регистрировались специальными датчиками. Свет может распространятся по оптическому волокну, которое изготавливается преимущественно из кварцевого стекла, на десятки километров, прежде, чем его интенсивность начнет заметно снижаться. Они использовали свет лазера со строго определенной длиной волны для генерации интенсивных акустических волн в ядре волновода стеклянного акустического волокна. Такая высокая прозрачность, низкая стоимость и высокая технологичность стекла обуславливает то, что оно является основой всех оптоволоконных технологий, используемых для передачи больших объемов информации.